Abstract
During placental formation, cytotrophoblasts (CTBs) fuse into multinucleate, microvilli-coated syncytiotrophoblasts (STBs), which contact maternal blood, mediating nutrient, metabolite, and gas exchange between mother and fetus, and providing a barrier against fetal infection. Trophoblasts remodel the surrounding extracellular matrix through the secretion of matrix metalloproteinases (MMPs). Maternal obesity and diabetes mellitus can negatively impact fetal development and may impair trophoblast function. We sought to model the impact of metabolic stress on STB function by examining MMP and hormone secretion. The BeWo CTB cell line was syncytialized to STB-like cells with forskolin. Cell morphology was examined by electron microscopy and immunofluorescence; phenotype was further assessed by ELISA and RT-qPCR. STBs were exposed to a metabolic stress cocktail (MetaC: 30 mM glucose, 10 nM insulin, and 0.1 mM palmitic acid). BeWo syncytialization was demonstrated by increased secretion of HCGβ and progesterone, elevated syncytin gene expression (ERVW-1 and ERVFRD-1), loss of tight junctions, and increased surface microvilli. MetaC strongly suppressed syncytin gene expression (ERVW-1 and ERVFRD-1), suppressed HCGβ and progesterone secretion, and altered both MMP-9 and MMP-2 production. Metabolic stress modeling diabetes and obesity altered BeWo STB hormone and MMP production in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.