Abstract

Stressful experiences in the early stages of life can influence brain development and maturation, and they can also increase the risk for some psychiatric disorders; however, the specific mechanisms of this effect are still poorly understood. Neural cell adhesion molecules (NCAM 120, 140, 180kDa) are known to play an important role in normal brain development and synaptic plasticity. Therefore, we decided to investigate whether maternal separation (MS) in rats, a paradigm which models an early life stress, has any impact on the expression of NCAM proteins in the juvenile, adolescent and adult brains of both male and female rats. Specifically, we focused our efforts on the brain regions associated with dopaminergic neurotransmission. In juvenile rats, MS decreased the levels of NCAM-140 in the substantia nigra (SN) of females and NCAM-180 in the ventral tegmental area of males. During adolescence, a reduction in NCAM-180 levels in the SN and medial prefrontal cortex (mPFC) of MS females was revealed. Finally, in adulthood, a decrease in NCAM-180 expression was observed in the mPFC of MS males. The results that we obtained indicate that early life stress can affect maturation and NCAM-driven plasticity in dopaminergic brain areas at different stages of ontogenesis and with a sex-specific manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.