Abstract

Neural cell adhesion molecule (NCAM) is down-regulated during periods of embryological cell migration and may be important in local tumor migration or metastases. Conflicting information exists in the literature about NCAM expression in human glial tumors and little is known about its expression in human brain metastases. We immunohistochemically stained a panel of 43 primary human brain tumors and their cultured counterparts for NCAM including glioblastoma multiformes, anaplastic astrocytomas, oligodendrogliomas, and contrasted their staining with a panel of 3 meningiomas, 11 brain metastases, and 5 normal brain samples utilizing the monoclonal antibody NKH-1. Most gliomas and metastatic melanomas and lung carcinomas showed a high percentage of cells positive for NCAM expression while NCAM staining was negative for other carcinomas. No difference was seen between intensity or percentage of cells that were NCAM positive, based on tumor grade or type. In glioma cell lines, NCAM expression was lost upon passage. In 15 glioma cell lines we also determined NCAM isoform expression by reverse transcription/polymerase chain reaction (RT/PCR) and found that 6 of 15 had message for NCAM 180, 8 of 15 for NCAM 140, and only 3 of 15 had message for NCAM 120. Normal brains always contained message for the 180 isoform and usually had mRNA for all 3 isoforms. Using monoclonal antibodies for retinoic acid receptor alpha (RAR alpha), we found nuclear staining in melanomas and lung carcinomas metastatic to brain and only rarely in gliomas. Neither the relative antigen density of NCAM nor the percent of NCAM-positive cells appreciably changed upon incubation with retinoic acid (RA), as measured by flow cytometry. RAR alpha was not found at a level measurable by immunohistochemistry in nuclei of most glial tumors, providing an explanation for why RA might not induce NCAM expression. Whether paucity of RAR alpha on primary gliomas might also correlate with results from clinical trials showing limited efficacy of RA in treatment of human gliomas awaits further study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call