Abstract

Background Evidence suggests that low birth weight (LBW) is associated with increased cardiovascular and metabolic risk in adulthood, including increased arterial stiffness, a marker of early vascular aging (EVA) assessable by pulse wave velocity (PWV), obesity and glucose homeostasis abnormalities. The present study aimed to explore the late impact of LBW on PWV and cardiometabolic phenotypes among young adult Cameroonians. Methods The study evaluated 120 subjects (mean age: 26 ± 5 years; 54% male sex) at the Cameroon Heart Institute, Douala, Cameroon, between January and June 2018. Birth weight (BW) and gestational age, sociodemographic, anthropometrics and fasting capillary blood glucose were recorded in all participants. Blood pressure (BP) and PWV were measured using an automatic oscillometric device (Mobil-O-Graph®). Multiple-adjusted linear regression was used to determine predictive factors for PWV. For assessment of potential impact of BW on EVA, PWV was adjusted for age, sex, body mass index (BMI) and mean arterial pressure (MAP). Results 28 participants (23.3%) of the study sample had LBW (<3000g). There was no gender difference between LBW or normal birth weight patients (NBW; controls). Age- and MAP-adjusted PWV (aPWV) were higher in women with LBW compared to NBW (5.6 m/s and 5.3 m/s respectively, P = 0.038). In men, aPWV was similar in LBW and NBW. In this study population, aPWV was higher (on average +15 cm/s) in LBW than in controls, although the difference was not statistically significant (P=0.083). Multivariate regression analysis showed age, male sex, BMI and MAP were independent determinants of PWV, but not LBW. Compared to NBW controls, the prevalence of overweight/obesity, impaired glucose homeostasis and diabetes was higher in LBW: 42.9% vs 37%; 10.7% vs 3.3%, and 3.6 % vs 1.1%, respectively. Moreover, compared with controls, LBW individuals who were overweight/obese in adulthood had a much higher mean fasting capillary glucose (1.54 ±0.17 g/l vs 0.87 ±0.11 g/l in NBW, p=0.003). Conclusion This study suggests that although LBW is associated with increased aortic stiffness in young adulthood, mainly in women, the association was predominantly driven by aging, MAP, BMI and male sex. In adulthood, LBW subjects exhibited higher obesity indices and altered glucose homeostasis.

Highlights

  • Growing evidence suggests that low birth weight (LBW) adjusted for gestational age could adversely influence arterial stiffness, a marker of early vascular aging (EVA) measured by aortic pulse wave velocity (PWV), and blood pressure (BP) regulation [1,2,3,4,5], thereby increasing risk of cardiovascular (CV) events in adulthood [3,4,5,6,7,8,9,10,11]

  • Mean age was comparable between subjects with LBW and those with normal birth weight (NBW)

  • The age adjusted Systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP) levels were slightly higher, albeit non-significantly in subjects with LBW compared to normal birth weight patients (NBW) (p=0.084)

Read more

Summary

Introduction

Growing evidence suggests that low birth weight (LBW) adjusted for gestational age could adversely influence arterial stiffness, a marker of early vascular aging (EVA) measured by aortic pulse wave velocity (PWV), and blood pressure (BP) regulation [1,2,3,4,5], thereby increasing risk of cardiovascular (CV) events in adulthood [3,4,5,6,7,8,9,10,11]. An inverse relationship between birth weight (BW) and BP has been demonstrated, with higher risk of hypertension in adulthood [1,2,6,7,8,9,10] This association could be related either to renal organogenesis abnormalityor to decreased elastin synthesis within large arteries’ wall during fetal life [6,12,13,14]. In individuals with LBW, early remodeling of large arteries, such as the aorta, might occur during adult life, with increase in caliber and wall remodeling, with a decrease in elastic fibers content and an increase in collagen fibers in the media. Evidence suggests that low birth weight (LBW) is associated with increased cardiovascular and metabolic risk in adulthood, including increased arterial stiffness, a marker of early vascular aging (EVA) assessable by pulse wave velocity (PWV), obesity and glucose homeostasis abnormalities.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call