Abstract

Methods of controlling spin coherence by molecular design are essential to efforts to develop molecular qubits for quantum information and sensing applications. In this manuscript, we perform the first studies of how arrangements of 35/37Cl nuclear spins in the ligand shell and counterion selection affect the coherent spin dynamics of V(IV) complexes at a high magnetic field. We prepared eight derivatives of the vanadium triscatecholate complex with varying arrangements of 35/37Cl substitution on the catechol backbone and R3NH+ counterions (R = Et, n-Bu, n-Hex) and investigated these species via structural and spectroscopic methods. Hahn-echo pulsed electron paramagnetic resonance (EPR) experiments at high-frequency (120 GHz) and field (ca. 4.4 T) were used to extract the phase-memory relaxation time (Tm) and spin-lattice relaxation (T1) times of the series of complexes. We found Tm values ranging from 4.8 to 1.1 μs in the temperature range of 5 to 40 K, varying by approximately 20% as a function of substitutional pattern. In-depth analysis of the results herein and comparison with related studies of brominated analogues disproves multiple hypothesized mechanisms for Tm control. Ultimately, we propose that more specific properties of the halogen atoms, e.g. the chemical shift, V⋯Cl hyperfine coupling, and quadrupolar coupling, could be contributing to the V(IV) Tm time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.