Abstract
This paper investigates the impact of iron (Fe) and molybdenum (Mo) when they are introduced in the feedstock for mono- and multicrystalline Float-Zone (FZ) silicon (Si) growth. Neutron Activation Analysis shows that the segregation coefficient is in agreement with literature values. Lifetime maps on monocrystalline wafers show a uniform lifetime which decreases with the increase of contamination levels. Multicrystalline wafers show low lifetime areas, corresponding to grain boundaries and highly dislocated areas, which are independent from the contamination levels. Intra grain areas have a higher lifetime which changes with the contamination levels. The solar cells show a reduced diffusion length in multicrystalline uncontaminated cells compare to the monocrystalline uncontaminated. In multicrystalline cells the lowest level of Fe introduced (1012 atm/cm3) has hardly any influence, whereas in the Mo-contaminated cells the impact is visible from the lowest level (1011 atm/cm3). In monocrystalline cells the diffusion length is reduced already at the lowest contamination level of Fe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.