Abstract
Tracer imaging has been instrumental in mapping the brain's solute transport pathways facilitated by cerebrospinal fluid (CSF) flow. However, the impact of tracer infusion parameters on CSF flow remains incompletely understood. This study evaluated the influence of infusion location, rate, and anesthetic regimens on tracer transport using dynamic contrast-enhanced MRI with Gd-DTPA as a CSF tracer. Infusion rate effects were assessed by administering Gd-DTPA into the cisterna magna (ICM) at two rates under isoflurane anesthesia. Anesthetic effects were evaluated by comparing transport patterns between isoflurane and ketamine/xylazine (K/X) anesthesia at the slower rate. Gd-DTPA transport was also examined after lateral ventricle (ICV) infusion, the primary site of CSF production. The results demonstrate that, besides anesthesia, both the location and rate of infusion substantially affected solute transport within the brain. ICV infusion led to rapid, extensive transport into deep brain regions, while slower ICM infusion resulted in more pronounced transport to dorsal brain regions. Cross-correlation and hierarchical clustering analyses of region-specific Gd-DTPA signal time courses revealed that ICM infusion facilitated transport along periarterial spaces, while ICV infusion favored transport across the ventricular-parenchymal interface. These findings underscore the importance of experimental conditions in influencing tracer kinetics and spatial distribution in the brain.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have