Abstract

We examine the impact of hydrogen on the boron-oxygen-related lifetime degradation and regeneration kinetics in boron-doped p-type Czochralski-grown silicon wafers. We introduce the hydrogen into the silicon bulk by rapid thermal annealing. The hydrogen source are hydrogen-rich silicon nitride (SiNx:H) layers. Aluminum oxide (Al2O3) layers of varying thickness are placed in-between the silicon wafer surfaces and the SiNx:H layers. By varying the Al2O3 thickness, which acts as an effective hydrogen diffusion barrier, the hydrogen bulk content is varied over more than one order of magnitude. The hydrogen content is determined from measured wafer resistivity changes. In order to examine the impact of hydrogen on the degradation kinetics, all samples are illuminated at a light intensity of 0.1 suns near room temperature. We observe no impact of the in-diffused hydrogen content on the degradation rate constant, confirming that hydrogen is not involved in the boron-oxygen degradation mechanism. The regeneration experiments at 160°C and 1 sun, however, show a clear dependence on the hydrogen content with a linear increase of the regeneration rate constant with increasing bulk hydrogen concentration. However, extrapolation of our measurements toward a zero in-diffused hydrogen content shows that the regeneration is still working even without any in-diffused hydrogen. Hence, our measurements demonstrate that there are two distinct regeneration processes taking place. This is in good agreement with a recently proposed defect reaction model and is also in agreement with the finding that the permanent boron-oxygen deactivation also works on non-fired solar cells, though at a lower rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.