Abstract

The effects of different hydraulic retention time (HRT) on short-cut nitrification granular sludge were studied in a continuous stirred-tank reactor (CSTR) by maintaining stable influent ammonia nitrogen load. Particle size distribution, extracellular polymeric substances (EPS), and functional bacterial kinetics were analyzed. The morphology of granular sludge, the performance of the CSTR, and the activity of functional microorganisms were investigated. The high throughout sequencing technology of MiSeq was employed to analyze the structure of the microbial community in sludge. The results showed that the ammonia nitrogen removal rate in the reactor was gradually increased from 80% to 95%, and the nitrite accumulation rate was always over 85% when the HRT was decreased from 4 h to 1 h. Particle size distribution of granular sludge was greatly influenced by HRT. The mass fraction of granules with a diameter smaller than 0.3 mm and larger than 1.6 mm was gradually declined, whereas the mass fraction of granules with a diameter between 0.3 mm and 0.8 mm was increased when HRT was shortened from 4 h to 1 h. The dominating proportion of granules with a diameter between 0.3 mm and 0.8 mm reached about 50% when HRT was 1 h. The impact of HRT on the activity of functional microorganisms was studied, and HRT activity was found to be closely related to the size of granular sludge. Proteobacteria were dominant in the system. AOB enrichment was represented by Nitrosomonas, which was more than 56%. Shortening HRT is beneficial for the enrichment of AOB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.