Abstract

AbstractBeach erosion due to large storms critically affects coastal vulnerability, but is challenging to monitor and quantify. Attributing erosion to a specific storm requires a reliable counterfactual scenario: hypothetical beach conditions, absent the storm. Calibrating models to construct counterfactuals requires numerous observations that are rarely available. Storm paths are unpredictable, making long‐term instrumentation of specific beaches costly. Optical remote sensing is hampered by persistent cloud cover. We use Sentinel‐1 satellite radar imagery to monitor shoreline changes through clouds and propose regression discontinuity as a strategy to estimate the causal effect of large storms on beach erosion. Applied to 75 beaches across Puerto Rico, the approach detects shoreline changes with a root‐mean‐square error comparable to the resolution of the imagery. Hurricane Maria caused an erosion of 3 to 5 m along its path, up to 40 m at particular beaches. Results reveal strong local disparities that are consistent with simulated nearshore hydrodynamic conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call