Abstract

The aim of this study was to investigate the degree of functional improvement of a transcatheter heart valve (THV) for valve-in-valve after bioprosthetic valve fracture (BVF) of three small surgical aortic valve bioprostheses (SAVBP) using high-pressure balloon aortic valvuloplasty (HP-BAV) under standardized ex-vivo-conditions. A THV 26 mm (Evolut R) and SAVBP 21 mm (Perimount Magna Ease, Trifecta, and Epic supra [n = 4] were used. Mean pressure gradient (MPG), effective orifice area (EOA), geometric orifice area (GOA), minimal internal diameter (MID), and pinwheeling index (PWI) were analyzed before and after HP-BAV of the SAVBP using a noncompliant balloon. Fracturing of the SAVBP was done before implantation of the THV and the balloon pressures at the point of fracture were recorded. The Magna Ease and Epic fractured at balloon pressures of 18 and 8 atm, respectively. The Trifecta did not fracture up to a balloon pressure of 30 atm but was dilated. HP-BAV led to increased THV expansion as evident by straightened coaptation lines of the Evolut R 26 mm with reduced PWI, increased MID, and increased GOA in all 21 mm SAVBP. Evolut R showed significantly lower MPG and higher EOA as ViV in all prostheses after HP-BAV (p < 0.001). MPG and EOA of Evolut R differed regarding the SAVBP. Evolut R presented the lowest MPG and highest EOA in Magna Ease and the highest MPG and lowest EOA in Epic supra. The degree of function improvement of the same THV as ViV after HP-BAV depends on the surgical valve model. Functional improvement can also be achieved without valve fracture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call