Abstract

The separated flow over a wall-mounted bump geometry under harmonic oscillations of the inflow stream is investigated with direct numerical simulations. The bump geometry gives rise to streamwise pressure gradients similar to those encountered on the suction side of low-pressure turbine (LPT) blades. Under steady inflow conditions, the separated-flow laminar-to-turbulent transition is initiated by self-sustained vortex shedding due to Kelvin-Helmholtz (KH) instability. In LPTs the dynamics are further complicated by the passage of the wakes shed by the previous stage of blades. The wake-passing effect is modeled here by introducing a harmonic variation of the inflow conditions. Three inflow oscillation frequencies and three amplitudes are considered. The frequencies are comparable to the wake-passing frequencies in practical LPTs. The amplitudes range from 1% to 10% of the inflow total pressure. The dynamics of the separated flow are studied by isolating the flow components that are respectively coherent with and uncorrelated to the inflow oscillation. Three scenarios are identified. The first one is analogous to the steady inflow case. In the second one, the KH vortex shedding is replaced during a part of the inflow period by the formation and release of a large vortex cluster. The third scenario consists solely of the periodic formation and release of the vortex cluster; it leads to a consistent reduction of the separated flow length over the entire period compared to the steady inflow case and would be the most desirable flow condition in a practical application. Published by the American Physical Society 2024

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call