Abstract
The incorporation of a small part of graphene oxide (GO) offers an appropriate fire retardant for thermally conductive epoxy (EP) resin composites, which is verified by the upper limiting oxygen index of 24.5% and other standard flame-retardant tests. The smoke production rate, total smoke production (TSP), and the smoke density of EP composites were reduced with additional GO. The increased efficiency of fire resistance and smoke suppression is primarily due to the formation of physical barrier and compactness of the developed GO char layers, serving as an effective barrier layer that increases the fire resistance, and the thermal steadiness of the char layers derives from the effect of GO inclusion. The barrier impact of GO and the limited mobility of polymer chains are crucial factors in increasing thermal stability and reduction of generating dangerous carbon monoxide during burns. The thermal stability increased and the peak heat release rate, total heat release, TSP, and the largest smoke density value reduced to 52.5%, 43.6%, 33.9%, and 44.2%, correspondingly, compared with pure EP. The tensile strength and elongation at break of EP composites were enhanced by 23% and 8.4% compared with pure EP, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.