Abstract
Single-frequency (SF) precise orbit determination (POD) using space-borne Global Positioning System (GPS) measurements is a prerequisite for the success of many low-cost small/micro low Earth orbit (LEO) satellite missions. The first-order ionospheric effects are usually eliminated by group and phase ionospheric correction (GRAPHIC) combinations. GPS receiver antenna GRAPHIC residual variations (GRVs) are important systematic error sources in SF orbit determination. Azimuth and elevation dependent GRVs are estimated and obtained based on the GRAPHIC combination residuals in an in-flight calibration. One month of data from GRACE-A, GRACE-B, CHAMP and HY-2A satellites is used to assess the potential of receiver antenna GRVs in SF orbit determination. It is the first time to study the impact of receiver antenna GRVs on SF orbit determination for different LEO satellites, which exhibit different altitudes and data qualities. The impact of receiver antenna GRVs on SF orbit determination is significant. The use of in-flight determined receiver antenna GRVs leads to a better consistency between SF and dual-frequency POD solutions. The improvements are more obvious for GRACE-A and CHAMP satellites, whose receiver antenna GRV patterns demonstrate clear characteristics of systematic deviations. After correcting the receiver antenna GRVs, the root-mean-square of satellite laser ranging validation residuals are 3.11 cm, 2.31 cm, 2.86 cm and 5.29 cm for GRACE-A, GRACE-B, CHAMP and HY-2A satellites, respectively, which are reduced by 11.1%, 4.6%, 14.6% and 4.7%, respectively. At last, a set of a priori GDV corrections of GPS transmitter antennas are used in SF orbit determination and its effects on receiver antenna GRVs estimation and SF orbit determination are analyzed. Applying these corrections can slightly improve the SF orbit quality of GRACE-A satellite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.