Abstract
Precision Orbit Determination (POD) is a prerequisite for the success of many Low Earth Orbiting (LEO) satellite missions. With high-quality, dual-frequency Global Positioning System (GPS) receivers, typically precisions of the order of a few cm are possible for single-satellite POD, and of a few mm for relative POD of formation flying spacecraft with baselines up to hundreds of km. To achieve the best precision, the use of Phase Center Variation (PCV) maps is indispensable. For LEO GPS receivers, often a-priori PCV maps are obtained by a pre-launch ground campaign, which is not able to represent the real space-borne environment of satellites. Therefore, in-flight calibration of the GPS antenna is more widely conducted.This paper shows that a further improvement is possible by including the so-called Code Residual Variation (CRV) maps in absolute/undifferenced and relative/Double-differenced (DD) POD schemes. Orbit solutions are produced for the GRACE satellite formation for a four months test period (August-November, 2014), demonstrating enhanced orbit precision after first using the in-flight PCV maps and a further improvement after including the CRV maps. The application of antenna maps leads to a better consistency with independent Satellite Laser Ranging (SLR) and K-band Ranging (KBR) low-low Satellite-to-Satellite Tracking (ll-SST) observations. The inclusion of the CRV maps results also in a much better consistency between reduced-dynamic and kinematic orbit solutions for especially the cross-track direction. The improvements are largest for GRACE-B, where a cross-talk between the GPS main antenna and the occultation antenna yields higher systematic observation residuals.For high-precision relative POD which necessitates DD carrier-phase ambiguity fixing, in principle frequency-dependent PCV maps would be required. To this aim, use is made of an Extended Kalman Filter (EKF) that is capable of optimizing relative spacecraft dynamics and iteratively fixing the DD carrier-phase ambiguities. It is found that PCV maps significantly improve the baseline solution. CRV maps slightly enhance the baseline precision, more significantly they lead to a much better initialization of the ambiguity fixing. The GRACE single-satellite orbit solutions compare to within a few cm 3-dimensionally with state-of-the-art external orbit solutions and SLR observations, whereas for the baseline a consistency of better than 0.7mm with KBR observations is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.