Abstract

A probabilistic methodology to quantify the impact of geometric variability on compressor aerodynamic performance is presented. High-fidelity probabilistic models of geometric variability are derived using a principal-component analysis of blade surface measurements. This probabilistic blade geometry model is then combined with a compressible, viscous blade-passage analysis to estimate the impact on the passage loss and turning using a Monte Carlo simulation. Finally, a mean-line multistage compressor model, with probabilistic loss and turning models from the blade-passage analysis, is developed to quantify the impact of the blade variability on overall compressor efficiency and pressure ratio. The methodology is applied to a flank-milled integrally bladed rotor. Results demonstrate that overall compressor efficiency can be reduced by approximately 1% due to blade-passage effects arising from representative manufacturing variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call