Abstract

Approximated and simplified real-atmospheric process impact in physical parameterization is a primary correspondent of biases in the model, particularly for extreme events. The present study discusses how event genesis in the small and large-scale quintessential environment is incongruously simulated within a set of multiple convection parameterizations. Despite a few inherent errors, most of the selected convective parameterization schemes could indicate 10-15 days in advance the Uttarakhand heavy rains resulted from large-scale background interaction. The runs without any convection scheme, followed by new-Tiedtke and BMJ schemes, outperform in this case. Further, almost all schemes except new-Tiedtke flunked for the case of Mount-Abu flood originated from relatively local-scale interaction even from 5-day advance initialization. Results are further extended for a few other cases using best performers of both extreme events and new-Tiedtke found to be more efficient. The better representation of convection (especially the shallow) and low clouds in this scheme makes it superior to other schemes for simulating extreme precipitation events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.