Abstract
Cardiovascular morbidity and mortality are far less in pre-menopausal women compared to age-matched men. Ovarian hormones are believed to be mainly responsible for this “female advantage” in cardiovascular function although the underlying mechanism has not been fully elucidated. A gender difference exists in vascular nitric oxide (NO) synthesis, which may play a key role in ventricular function and cardiac remodeling. This study was designed to compare NO production, basal NO synthase (NOS) expression and activity, as well as insulin-like growth factor I (IGF-1)-induced response on NOS activity in left ventricular myocytes from age-matched adult male and female Sprague–Dawley rats. NO production and protein expression of NOS, IGF-1 receptor (IGF-1R) and IGF binding protein-3 (IGFBP-3) were measured by Griess assay and Western blot analysis, respectively. NOS activity was evaluated by conversion of 3H-arginine to 3H-citrulline. Basal NO production, endothelial NOS expression and NOS activity were both significantly higher in female left ventricular myocytes than their male counterparts. However, protein expression of inducible and neuronal NOS as well as IGFBP-3 was comparable between the two genders. IGF-1R expression was less in female than male group. IGF-1 (10 −10–10 −6 m) induced a concentration-dependent inhibition of NOS activity in male myocytes with a maximal inhibition of 22.2%. However, the IGF-1-induced inhibition in NOS activity was not present in left ventricular myocytes from female rats. These data revealed a gender difference in myocardial basal NO levels, endothelial NOS expression, basal NOS activity and IGF-1-induced inhibition on NOS activity, which may contribute to the gender-related difference of cardiac function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.