Abstract
Using a dual-gate structure, we have investigated the impact of gate-stress position on the current collapse behavior of AlGaN/GaN high-electron-mobility transistors (HEMTs) without surface passivation. When the gate-bias stress under the off state was applied to the additional gate between the main gate and the drain electrode, we observed a marked increase in on-resistance (RON). On the other hand, the off-state stress on the main gate itself caused a decrease in drain saturation current as well as an increase in RON. The calculation of electric field at the AlGaN surface showed that the field peaks existed at the gate edges on both the drain and source sides, probably causing electron charging at the AlGaN surface near both gate-edge areas. These results indicated that the off-state gate stress induces “virtual gates” in the gate edges expanding in both the drain and source directions. The impacts of device structures on the current collapse have been characterized, using Schottky-gate HEMTs with and without surface passivation and metal–oxide–semiconductor (MOS) gate HEMTs. The surface passivation and MOS-gate structure was effective in mitigating current collapse, which was explained in terms of surface state density, electric field strength, and gate leakage current.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.