Abstract

Galvanic vestibular stimulation (GVS) uses at least one electrode placed on the mastoid process with one or multiple placed over other head areas to stimulate the vestibular system. The exact electrode size used is not given much importance in the literature and has not been reported in several studies. In a previous study, we compared the clinical effects of using different electrode sizes (3 cm2 and 35 cm2) with placebo but with the same injected current, on postural control. We observed significant improvement using the smaller size electrode but not with the bigger size electrode. The goal of this study was to simulate the current flow patterns with the intent to shed light and potentially explain the experimental outcome. We used an ultra-high-resolution structural dataset and developed a model to simulate the application of different electrode sizes. We considered current flow in the brain and in the vestibular labyrinth. Our simulation results verified the focality increase using smaller electrodes that we postulated as the main reason for our clinical effect. The use of smaller size electrodes in combination with the montage employed also result in higher induced electric field (E-field) in the brain. Electrode size and related current density is a critical parameter to characterize any GVS administration as the choice impacts the induced E-field. It is evident that the higher induced E-field likely contributed to the clinical outcome reported in our prior study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.