Abstract
BackgroundNovel noninvasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been developed in recent years. tDCS-induced corticospinal excitability changes depend on two important factors: current density and electrodes size. Despite clinical success with existing tDCS parameters; optimal protocols are still not entirely set. ObjectiveThe current study aimed to investigate the effects of anodal tDCS (a-tDCS) with three electrode sizes on corticospinal excitability. Methodsa-tDCS was applied with three active electrode sizes of 12, 24 and 35 cm2 with a constant current density of 0.029 mA/cm2 on twelve right handed healthy individuals (mean age: 34.5 ± 10.32 years) in different sessions at least 48 h apart. a-tDCS was applied continuously for 10 min, with a constant reference electrode size of 35 cm2. The corticospinal excitability of extensor carpi radialis muscle (ECR) was measured before and immediately after the intervention and at 10, 20 and 30 min thereafter. ResultsWe found that smaller electrode may produce more focal current density and could lead to more effective and localized neural modulation than the larger ones. Post hoc comparisons showed that active electrode of 12 cm2 size induces the biggest increase in the corticospinal excitability compared to bigger electrode sizes, 24 cm2 (P = 0.002) and 35 cm2 (P = 0.000). There was no significant difference between two larger electrode sizes (24 cm2 and 35 cm2) (P = 0.177). a-tDCS resulted in significant excitability enhancement lasting for 30 min after the end of stimulation in the 12 and 24 cm2 electrode size conditions (P < 0.005). However, in 35 cm2 electrode size condition, the MEP amplitudes of the ECR did not differ significantly from baseline value in 20 and 30 min post stimulation (P > 0.005). ConclusionReducing stimulation electrode size to one third of the conventional one results in spatially more focused stimulation and increases the efficacy of a-tDCS for induction of larger corticospinal excitability. This may be due to the fact that larger electrodes stimulate nearby cortical functional areas which can have inhibitory effects on primary motor cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.