Abstract
ABSTRACT The future of precision cosmology could benefit from cross-correlations between intensity maps of unresolved neutral hydrogen (H i) and more conventional optical galaxy surveys. A major challenge that needs to be overcome is removing the 21cm foreground emission that contaminates the cosmological H i signal. Using N-body simulations, we simulate H i intensity maps and optical catalogues that share the same underlying cosmology. Adding simulated foreground contamination and using state-of-the-art reconstruction techniques, we investigate the impacts that 21cm foregrounds and other systematics have on these cross-correlations. We find that the impact a Fast Independent Component Analysis 21cm foreground clean has on the cross-correlations with spectroscopic optical surveys with well-constrained redshifts is minimal. However, problems arise when photometric surveys are considered: We find that a redshift uncertainty σz ≥ 0.04 causes significant degradation in the cross-power spectrum signal. We diagnose the main root of these problems, which relates to arbitrary amplitude changes along the line of sight in the intensity maps caused by the foreground clean and suggest solutions that should be applicable to real data. These solutions involve a reconstruction of the line-of-sight temperature means using the available overlapping optical data along with an artificial extension to the H i data through redshift to address edge effects. We then put these solutions through a further test in a mock experiment that uses a clustering-based redshift estimation technique to constrain the photometric redshifts of the optical sample. We find that with our suggested reconstruction, cross-correlations can be utilized to make an accurate prediction of the optical redshift distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.