Abstract

ABSTRACT The distribution of cosmological neutral hydrogen will provide a new window into the large-scale structure of the Universe with the next generation of radio telescopes and surveys. The observation of this material, through 21 cm line emission, will be confused by foreground emission in the same frequencies. Even after these foregrounds are removed, the reconstructed map may not exactly match the original cosmological signal, which will introduce systematic errors and offset into the measured correlations. In this paper, we simulate future surveys of neutral hydrogen using the Horizon Run 4 (HR4) cosmological N-body simulation. We generate H i intensity maps from the HR4 halo catalogue, and combine with foreground radio emission maps from the Global Sky Model, to create accurate simulations over the entire sky. We simulate the H i sky for the frequency range 700–800 MHz, matching the sensitivity of the Tianlai pathfinder. We test the accuracy of the fastICA, PCA, and log-polynomial fitting foreground removal methods to recover the input cosmological angular power spectrum and measure the parameters. We show the effect of survey noise levels and beam sizes on the recovered the cosmological constraints. We find that while the reconstruction removes power from the cosmological 21 cm distribution on large scales, we can correct for this and recover the input parameters in the noise-free case. However, the effect of noise and beam size of the Tianlai pathfinder prevents accurate recovery of the cosmological parameters when using only intensity mapping information.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call