Abstract

Fluazuron is a novel veterinary pour-on antitick formulation which can be applied simultaneously with bovine reproduction management strategies. Considering the economic importance of the livestock industry in many countries, it is important to know whether antiparasitics such as fluazuron may cause embryonic loss. The aim of this study was to evaluate the toxicological effect of fluazuron on bovine oocytes during in vitro maturation. The best fluazuron concentrations were determined in a preliminary experiment on Chinese hamster ovary (CHO)-K1 cells and further used to compare fluazuron toxicity in both study models. Results of the annexin V and alkaline single cell gel electrophoresis assays demonstrated that fluazuron caused cytotoxicity and genotoxicity in bovine cumulus cells at all the concentrations tested (50, 75 and 100 μg fluazuron/mL). The evaluation of cortical granules and mitochondria distribution showed that cytoplasmic maturation was not affected by fluazuron treatment. However, a decrease in metaphase II + polar body, degenerate oocytes as well as disorganized chromatin in polar body were observed at all concentrations tested. Whereas the fertilization process was not altered by 50 μg/mL fluazuron, the embryo development rate decreased significantly. No significant differences were observed in any of the oxidative stress parameters assessed. This study contributes to a better understanding of fluazuron in bovines, suggesting that the antiparasitic may affect bovine reproduction and might cause embryo loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.