Abstract

BackgroundMechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). However, mechanisms governing advanced plaque progression are not well understood.MethodIn vivo serial MRI data (patient follow-up) were acquired from 14 patients after informed consent. Each patient had 2-4 scans (scan interval: 18 months). Thirty-two scan pairs (baseline and follow-up scans) were formed with slices matched for model construction and analysis. Each scan pair had 4-10 matched slices which gave 400-1000 data points for analysis (100 points per slice on lumen). Point-wise plaque progression was defined as the wall thickness increase (WTI) at each data point. 3D computational models with fluid-structure interactions were constructed based on in vivo serial MRI data to extract flow shear stress and plaque wall stress (PWS) on all data points to quantify correlations between plaque progression and mechanical stresses (FSS and PWS). FSS and PWS data corresponding to both maximum and minimum flow rates in a cardiac cycle were used to investigate the impact of flow rates on those correlations.ResultsUsing follow-up scans and maximum flow rates, 19 out of 32 scan pairs showed a significant positive correlation between WTI and FSS (positive/negative/no significance correlation ratio = 19/9/4), and 26 out of 32 scan pairs showed a significant negative correlation between WTI and PWS (correlation ratio = 2/26/4). Corresponding to minimum flow rates, the correlation ratio for WTI vs. FSS and WTI vs. PWS were (20/7/5) and (2/26/4), respectively. Using baseline scans, the correlation ratios for WTI vs. FSS were (10/12/10) and (9/13/10) for maximum and minimum flow rates, respectively. The correlation ratios for WTI vs. PWS were the same (18/5/9), corresponding to maximum and minimum flow rates.ConclusionFlow shear stress corresponding to the minimum flow rates in a cardiac cycle had slightly better correlation with WTI, compared to FSS corresponding to maximum flow rates. Choice of maximum or minimum flow rates had no impact on PWS correlations. Advanced plaque progression correlated positively with flow shear stress and negatively with plaque wall stress using follow-up scans. Correlation results using FSS at the baseline scan were inconclusive.

Highlights

  • Cardiovascular diseases are the Number One cause of death in the developed countries and are becoming the Number One cause of death worldwide

  • Flow shear stress corresponding to the minimum flow rates in a cardiac cycle had slightly better correlation with wall thickness increase (WTI), compared to flow shear stress (FSS) corresponding to maximum flow rates

  • Choice of maximum or minimum flow rates had no impact on plaque wall stress (PWS) correlations

Read more

Summary

Introduction

Cardiovascular diseases are the Number One cause of death in the developed countries and are becoming the Number One cause of death worldwide. Tang et al used 2D structure-only models based on in vivo MRI patient-tracking data from 21 patients and their results indicated that 18 out of 21 patients studied showed significant negative correlation between plaque progression measured by wall thickness increase (WTI) and plaque wall stress (PWS, structure maximum principal stress taken at lumen wall) at follow-up time (T2). A recent paper from the same group reported that advanced human carotid plaque progression correlates positively with flow shear stress (FSS) using follow-up MRI scan data [10]. Mechanical stresses are known to play important roles in atherosclerotic plaque initiation, progression and rupture. It has been well-accepted that atherosclerosis initiation and early progression correlate negatively with flow wall shear stresses (FSS). Mechanisms governing advanced plaque progression are not well understood

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.