Abstract

This paper investigates the natural convection inside a partially layered porous cavity with a heated wavy solid wall; the geometry is encountered in compact heat exchangers. Alumina nanoparticles are included in the water to enhance the heat exchange process. The incidental entropy generation is also studied to evaluate the thermodynamic irreversibility. The nanofluid flow is taken as laminar and incompressible while the advection inertia effect in the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is explained in the dimensionless form of the governing equations and solved by the finite element method. The Darcy number (Da), porosity of the porous layer ( $$\varepsilon$$ ), number of undulations (N), and the nanoparticles volume fraction ( $$\phi$$ ) are varied to assess the heat transfer and the incidental entropy generation. It is found that the waviness of the solid wall augments the average Nusselt number and minimizes the generation of entropy. The results show for some circumstances that the Nusselt number is augmented by 43.8% when N is raised from 0 (flat solid wall) to 4. It is also found that the porosity of the porous layer is a more crucial parameter than its permeability, where a 37.4% enhancement in the Nusselt number is achieved when the porosity is raised from 0.2 to 0.8.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.