Abstract
AbstractEnsuring accurate forecasts of Global Horizontal Irradiance (GHI) stands as a pivotal aspect in optimizing the efficient utilization of solar energy resources. Machine learning techniques offer promising prospects for predicting global horizontal irradiance. However, within the realm of machine learning,the importance of feature selection cannot be overestimated, as it is crucial in determining performance and reliability of predictive models. To address this, a comprehensive machine learning algorithm has been developed, leveraging advanced feature importance techniques to forecast GHI data with precision. The proposed models draw upon historical data encompassing solar irradiance characteristics and environmental variables within the Ouarzazate region, Morocco, spanning from 1st January 2018, to 31 December 2018, with readings taken at 60-minute intervals. The findings underscore the profound impact of feature selection on enhancing the predictive capabilities of machine learning models for GHI forecasting. By identifying and prioritizing the most informative features, the models exhibit significantly enhanced accuracy metrics, thereby bolstering the reliability, efficiency, and practical applicability of GHI forecasts. This advancement not only holds promise for optimizing solar energy utilization but also contributes to the broader discourse on leveraging machine learning for renewable energy forecasting and sustainability initiatives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.