Abstract
Extreme rainfalls often lead to large amounts of nitrogen (N) loss from river basins. However, the composition and spatial variation of N loss caused by extreme events and the effects of control measures are not well understood. To shed light into this question, the Soil and Water Assessment Tool (SWAT) was used to evaluate the spatiotemporal characteristics of organic and inorganic nitrogen (ON and IN) losses in the coastal basins of Laizhou Bay during typhoons Rumbia and Lekima. The effects of best management practices on controlling N loss were also explored during such extreme rainfall events. Results showed that extreme rainfall promoted transport of ON more than IN. The mass of ON and IN transported by the two typhoons exceeded 57 % and 39 % of the average annual N flux, respectively, and the loads were positively correlated with streamflow. During the two typhoons, the loss of ON was mainly concentrated in areas with steep slopes (θ > 15°) and natural vegetation (forests, grasslands, and shrublands). The IN loss was higher in areas with a 5–10° slope. Furthermore, subsurface flow was the main IN transport mechanism in areas with steep slope (θ > 5°). Simulations showed that implementation of filter strips in areas with slopes exceeding 10° can reduce N loss, with much greater reductions in ON (>36 %) than IN (>0.3 %). This study provides important insights into N loss during extreme events and the key role filter strips can play in trapping them before they reach downstream waterbodies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.