Abstract

Equine herpesvirus 1 (EHV-1) causes respiratory illness, fetal loss, perinatal mortality, and myeloencephalopathy. This study investigated ORF15's impact on virus infectivity and neurovirulence. The Ab4p neurovirulent strain of EHV1 was used as a backbone to create Ab4p attB, Ab4p∆ORF15, and Ab4p∆ORF15R chimeras via BAC DNA transfection into RK-13 cells. Viral growth kinetics, plaque size, transcription, and growth were assessed in MDBK cells, mouse neurons, and fetal equine brain cells. Neurovirulence was evaluated post-intranasal inoculation into male CBA/N1 SPF mice, measuring signs, virus titers, and histopathological changes. Deletion of EUL45 (Ab4p-∆EUL45) reduced viral replication efficiency, resulting in decreased release and smaller plaques. EUL45 deletion also upregulated neighbouring genes (EUL46 and EUL44). Ab4p-∆EUL45 exhibited reduced virulence and poor growth in neural cells compared to wild-type viruses. This study sheds light on EUL45's role in EHV-1, viral replication, and regulation of EUL46 and EUL44 expression, suggesting potential as a vaccine candidate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.