Abstract

Since 2016, Oil and Gas Institute – National Research Institute (INiG – PIB) has been conducting new research to determine the relationship between ambient temperature and gas temperature in industrial diaphragm gas meters during the measurement, and to develop new recommendations for billing systems using industrial diaphragm gas meters with a throughput of until 25 m3/h. In the first stage, work was carried out, in which the obtained test results confirmed that the heat exchange process in an industrial diaphragm gas meter depends on the ambient temperature, the gas temperature at the inlet to the gas meter, the flow rate of the gas flowing, as well as the casing surface and the gas volume of the gas meter. In the next stage, work was carried out to determine the relationship between ambient temperature and gas temperature at the industrial diaphragm gas meter connection during the measurement. The obtained results undermined the thesis, which indicated that the gas inlet temperature is equal to the gas temperature at the depth of the gas network. In the last stage, work was carried out to determine the course of changes in gas temperature in industrial diaphragm gas meters as a function of ambient temperature and cyclical changes of the gas flow rate, which were to reflect the work of gas meters installed at customers’ premises. The analysis of the obtained test results once again showed a strong dependence of the gas temperature inside industrial diaphragm gas meters on the ambient temperature, but also on the flow rate of gas. The obtained results of laboratory tests will be used to carry out a thermodynamic description of the heat exchange process in an industrial diaphragm gas meter, which would allow the determination of the gas billing temperature as a function of the ambient temperature, the temperature of the inflowing gas and the gas flow rate. The calculated gas temperature values could be used to determine the temperature correction factors applicable when settling gas consumers billed on the basis of measurement with the use of industrial diaphragm gas meters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.