Abstract

Energy consumption is a major cause of air pollution in Beijing, and the adjustment of the energy structure is of strategic importance to the reduction of carbon intensity and the improvement of air quality. In this paper, we explored the future trend of energy structure adjustment in Beijing till 2020, designed five energy scenarios focusing on the fuel substitution in power plants and heating sectors, established emission inventories, and utilized the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality Model (CMAQ) to evaluate the impact of these measures on air quality. By implementing this systematic energy structure adjustment, the emissions of PM10, PM2.5, SO2, NO x , and non-methane volatile organic compounds (NMVOCs) will decrease distinctly by 34.0%, 53.2%, 78.3%, 47.0%, and 30.6% respectively in the most coalintensive scenario of 2020 compared with 2005. Correspondingly, MM5-Models-3/CMAQ simulations indicate significant reduction in the concentrations of major pollutants, implying that energy structure adjustment can play an important role in improving Beijing’s air quality. By fuel substitution for power plants and heating boilers, PM10, PM2.5, SO2, NO x , and NMVOCs will be reduced further, but slightly by 1.7%, 4.5%, 11.4%, 13.5%, and 8.8% respectively in the least coal-intensive scenario. The air quality impacts of different scenarios in 2020 resemble each other, indicating that the potential of air quality improvement due to structure adjustment in power plants and heating sectors is limited. However, the CO2 emission is 10.0% lower in the least coal-intensive scenario than in the most coal-intensive one, contributing to Beijing’s ambition to build a low carbon city. Except for energy structure adjustment, it is necessary to take further measures to ensure the attainment of air quality standards.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.