Abstract

Linking tissue uncoupling protein (UCP) homolog abundance with functional metabolic outcomes and with expression of putative genetic regulators promises to better clarify UCP homolog physiological function. A murine endotoxemia model characterized by marked alterations in thermoregulation was employed to examine the association between heat production, UCP homolog expression, and mitochondrial proton leak ("uncoupling"). After intraperitoneal lipopolysaccharide (LPS, approximately 6 mg/kg) injection, colonic temperature (T(c)) in adult female C57BL6/J mice dropped to a nadir of approximately 30 degrees C by 8 h, preceded by a four- to fivefold drop in liver UCP2 and UCP5/brain mitochondrial carrier protein 1 mRNA levels, with no change in their hindlimb skeletal muscle (SKM) expression. SKM UCP3 mRNA rose fivefold during development of hypothermia and was correlated with an LPS-induced increase in plasma free fatty acid concentration. UCP2 and UCP5 transcripts recovered about three- to sixfold in both tissues starting at 6-8 h, preceding a recovery of T(c) between 16 and 24 h. SKM UCP3 followed an opposite pattern. Such results are not consistent with an important influence of UCP3 in driving heat production but do not preclude a role for UCP2 or UCP5 in this process. The transcription coactivator PGC-1 displayed a transient LPS-evoked rise (threefold) or drop (two- to fivefold) in SKM and liver expression, respectively. No differences between control and LPS-treated mouse liver or SKM in vitro mitochondrial proton leak were evident at time points corresponding to large differences in UCP homolog expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.