Abstract
Abstract Most of the existing emission models developed from small-scale chamber tests assume complete mixing in the chamber throughout the test period. This paper examined this assumption using a Computational Fluid Dynamics (CFD) model. The model simulated the three-dimensional air velocity profiles and Volatile Organic Compound (VOC) concentration distributions from wood stain in a well-designed mixing chamber of 1.0X0.8X0.5 m3. The model used measured data to determine the time-dependent VOC surface concentrations of wood stain. The CFD results show that the VOC concentrations in the test chamber were not uniform in the early stage (about 18 minutes). The first-order decay model using the complete mixing assumption will underestimate the Total VOC (TVOC) emission rates by 65% and 59% in the first 3 minutes and next 15 minutes, respectively. Since wood stain emitted about one third of the VOCs in the first 18 minutes, the impact of incomplete mixing in the early period is significant for calculating the material emissions. Furthermore, the mass transfer coefficient of TVOC calculated by CFD is also compared with that calculated by analogue theory and that calculated by experimental correlation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.