Abstract

The interiors of quiescent prominences are filled with turbulent flows. The evolution of upflow plumes, descending pillars, and vortex motions has been clearly detected in high-resolution observations. The Rayleigh-Taylor instability is thought to be a driver of such internal flows. Descending pillars are related to the mass budgets of prominences. There is a hypothesis of dynamic equilibrium where the mass drainage via descending pillars and the mass supply via radiative condensation are balanced to maintain the prominence mass; however, the background physics connecting the two different processes is poorly understood. In this study, we reproduced the dynamic interior of a prominence via radiative condensation and the mechanism similar to the Rayleigh-Taylor instability using a three-dimensional magnetohydrodynamic simulation including optically thin radiative cooling and nonlinear anisotropic thermal conduction. The process to prominence formation in the simulation follows the reconnection-condensation model, where topological change in the magnetic field caused by reconnection leads to radiative condensation. Reconnection is driven by converging motion at the footpoints of the coronal arcade fields. In contrast to the previous model, by randomly changing the speed of the footpoint motion along a polarity inversion line, the dynamic interior of prominence is successfully reproduced. We find that the mass condensation rate of the prominence is enhanced in the case with dynamic state. Our results support the observational hypothesis that the condensation rate is balanced with the mass drainage rate and suggest that a self-induced mass maintenance mechanism exists.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call