Abstract

The impact of drug loading on the compaction properties of itraconazole (ITZ)- poly(vinylpyrrolidone-co-vinyl-acetate) (PVPVA) amorphous solid dispersions (ASDs) was studied. Neat amorphous ITZ, amorphous PVPVA, and their ASDs from 20% to 80% ITZ loadings were prepared by spray drying. Physical characterization showed that all powders have comparable particle size and morphology. All samples were equilibrated under 33% RH prior to compaction studies using a compaction simulator. Tabletability and compactability profiles of the ASD powders differed significantly, while their compressibility was similar. At compaction pressures from 50 to 150 MPa, tensile strength of ASD compacts increased with the increase of ITZ loading, reaching to the maximum at 40–60% ITZ loadings and then decreased as ITZ loading further increased. However, at the compaction pressure of 200 MPa, a monotonic decrease of tensile strength with the increase of ITZ loading was observed. In addition, except for the ASD with 20% ITZ loading, the detrimental effect of compaction pressure on tensile strength was observed at pressures at or above 150 MPa. Overall, this work highlights the importance of evaluating the compaction properties of ASD intermediates prior to downstream tablet development, especially if a high drug loading ASD is desired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.