Abstract
Optimal selection of domain discretization for numerical Phase Change Material (PCM) models is useful to establish confidence in model predictions and minimize the time consumption for conducting design analysis. Very detailed and geometrically complex models are usually applied utilizing several million cells. A 2D numerical PCM model of a climate module for thermal comfort ventilation is investigated. The mesh independence was conducted on 22 different mesh sizes ranging from 70 to 10.870 nodes. Convergence criteria was evaluated based on average air supply temperature and total heat transfer between the PCM and the air within the simulation time interval. Less than 0.1 % change in the air supply temperature and the heat transfer between the PCM and the air was achieved with 5250 and 9870 nodes, respectively. Thereby highlighting that a relatively small amount of nodes can be considered to achieve sufficient accuracy to conduct analysis of PCM applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.