Abstract

Distributed generation (DG) has gained popularity among electricity end users who are determined to contribute to a cleaner environment by conforming to green and sustainable energy sources for various daily needs. The power system impact of such trends (e.g. roof-top solar-PV) need thorough investigation, such as impact on fault current levels on the distribution network. Varying fault current levels could adversely affect the operation of protection relays, which may lead to localized blackouts. Therefore, it is imperative to avoid localised blackouts due to mal-operation of protective relays under high penetration of DGs in distribution network. The focus of this research is to study the importance and implications of protective relays and over-current protection in the presence of distributed generation; where the impact of distributed generation on distribution network is identified. Relay coordination is observed to determine their operation characteristics to avoid mal-operation with the presence of DGs (e.g. solar-PV). This paper uses the UK generic distribution network model to simulate different scenarios in DIgSILENT Power Factory. The resulting power quality measures, such as voltage levels, short-circuit current levels and frequency are presented and discussed in the paper. The research highlights that small-scale DG penetration allows for existing protection infrastructure to continue operation and expensive upgrades for overall network are not required as fault levels remain the same.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call