Abstract
The Distributed Generator types have different combinations of real and reactive power characteristics, which can affect the total power loss and the voltage support/control of the radial distribution networks (RDNs) in different ways. This paper investigates the impact of DG’s penetration level (PL) on the power loss and voltage profile of RDNs based on different DG types. The DG types are modeled depending on the real and reactive power they inject. The voltage profiles obtained under various circumstances were fairly compared using the voltage profile index (VPI), which assigns a single value to describe how well the voltages match the ideal voltage. Two novel effective power voltage stability indices were developed to select the most sensitive candidate buses for DG penetration. To assess the influence of the DG PL on the power loss and voltage profile, the sizes of the DG types were gradually raised on these candidate buses by 1% of the total load demand of the RDN. The method was applied to the IEEE 33-bus and 69-bus RDNs. A PL of 45–76% is achieved on the IEEE 33-bus and 48–55% penetration on the IEEE 69-bus without an increase in power loss. The VPI was improved with increasing PL of DG compared to the base case scenario.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have