Abstract

With the growth of distributed generation (DG) and renewable energy resources the power sector is becoming more sophisticated, distributed generation technologies with its diverse impacts on power system is becoming attractive area for researchers. Reliability is one of the vital area in electric power system which defines continuous supply of power and customer satisfaction. Around the world many power generation and distribution companies conduct reliability tests to ensure continues supply of power to its customers. Uttermost reliability problems in power system are due to distribution network. In this research reliability analysis of distribution system is done. The interruption frequency and interruption duration increases as the distance of load points increase from feeder. Injection of single DG unit into distribution system increase reliability of distribution system, injecting multiple DG at different locations and near to load points in distribution network further increases reliability of distribution system, while introducing multiple DG at single location improves reliability of distribution system. The reliability of distribution system remains unchanged while varying the size of DG unit. Different reliability tests were done to find the optimum location to plant DG in distribution system. For these analyses distribution feeder bus 2 of RBTS is selected as case study. The distribution feeder is modeled in ETAP, ETAP is software tool used for electrical power system modeling, analysis, design, optimization, operation, control, and automation. These results can be helpful for power utilities and power producer companies to conduct reliability tests and to properly utilize the distributed generation sources for future expansion of power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call