Abstract

Remote camera-based estimation of blood oxygen saturation (SpO2) using visible lights has been studied recently, typically for red (660 nm) and green (550 nm) wavelengths. This paper investigates the impact of different skin penetration depths of red and green wavelengths on the SpO2 estimation based on mathematical modeling and experiments, where the SpO2-calibritability between two illumination setups, narrow-band red/green and narrow-band red/infrared, are statistically compared using the "ratio-of-ratios" method. The results show that the performance of the setup using red/green is less consistent among 17 volunteers than the setup using red/infrared, and larger SpO2 disparity between different skin regions (by SpO2 imaging) have been found for individuals in the red/green wavelengths setup. The use of visible light (red and green) may impose a risk of SpO2 calibration due to the different skin penetration depths of these two wavelengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.