Abstract

Despite extensive research in photocatalytic water splitting, electrolyte usage varies greatly across different photocells. Photocatalytic water splitting continues to be performed in a wide range of electrolytes, from very acidic to very basic, with incomplete understanding of how the electrolyte composition affects performance. This study provides guidelines for electrolyte selection in water splitting applications. To determine properties that comprise an ideal electrolyte for photocatalytic electrolysis, the effects of several parameters were studied: pH, dissolved oxygen, conductivity, and composition. The photoactive anode was a nanostructured thin film synthesized by a flame aerosol process. The photocatalytic conversion efficiency increased with both pH and conductivity, but changes in dissolved oxygen levels had no discernible effect. The electrolyte composition was adjusted using selected salts and bases. Although the effect of the cation was negligible, anions were found to reduce efficiencies if their oxidation potential makes them thermodynamically favored over water molecules for oxidation. The results of these studies were applied in an analysis of the prospects for splitting seawater to produce hydrogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.