Abstract

ABSTRACT 1. Two experiments were conducted, the first to determine the optimum inclusion of chitosan oligosaccharide (COS) in broiler diets to support growth performance, digestive functions, intestinal morphology, and immune organs. The second experiment evaluated the immune-protective properties of COS on broiler chickens during coccidia challenge (CC). 2. Experiment 1 investigated the effect of graded dietary concentration of COS in the diets of broiler chickens using eight cage replicates for each of the six diets. A corn-soybean meal-based diet was used as the basal diet and supplemented with 0.0, 0.5, 1.0, 1.5, 2.0, or 2.5 g of COS/kg feed to form the six treatments. 3. The diet supplemented with 1.0 g COS/kg of feed provided the optimal inclusion level for broiler chickens regarding body weight (BW) gain, jejunal villus height, villus height to crypt depth ratio, and ileal energy digestibility at d 22 of age. 4. Experiment 2 investigated the immune-protective properties of COS in broiler chickens during CC. A total of 224 male broiler chicks were randomly assigned to eight replicate cages in a 2 × 2 factorial arrangement of treatments with two COS concentrations (0 or 1 g of COS/kg of diet), with or without CC. 5. On d 18 of age, birds in the CC group received twice the recommended coccidia vaccine dose of 30 doses/kg BW. 6. Coccidia challenge reduced (P < 0.05) and dietary COS increased (P < 0.05) BW gain, and feed intake. Dietary COS mitigated (P < 0.05) the CC-induced effects on gain:feed. Dietary COS supplementation attenuated the CC-induced effects (P < 0.05) on the expression of occludin genes. 7. In conclusion, dietary COS improved performance, and the immune-related beneficial impact of COS supplementation was associated with reduced expression of pro-inflammatory cytokine genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.