Abstract

Enantioselective biodegradation of racemic dichlorprop in two soils was investigated in the laboratory. Chiral separation of racemic dichlorprop was achieved by using HPLC with Phenomenex Lux Amylose-2. The first-order kinetic model fitted well the dissipation data of racemic dichlorprop and its pure R- and S-enantiomers. S-dichlorprop was preferentially degraded in both soils and enantioselectivity was affected by soil pH. The half-lives (DT50) of S-dichlorprop were 8.22 days in soil A and 8.06 days in soil D, while R-dichlorprop was more persistent with DT50 of 12.93 days in soil A and 12.38 days in soil D, respectively. Dichlorprop dissipated faster in soil D with lower organic matter content. In sterilized soils, neglected dissipation was observed and enantiomer fraction values remained constant, indicating that the enantioselective degradation was mainly controlled by soil microorganisms. Soil microbial community structure and diversity was assessed by Illumina MiSeq sequencing of 16S rRNA genes from dichlorprop and no dichlorprop contaminated microcosms. Compared with controls, dichlorprop application had no significant effect on microbial community structures at phylum level, but increased bacterial diversity and dichlorprop degradation related taxa in both soils. S-dichlorprop preferential degradation might be attributed to the S-enantiomer preferred degraders in the family of Sphingomonadaceae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call