Abstract

Recent in vivo electrophysiological studies suggest that chronic dopamine depletion alters profoundly the firing pattern of basal ganglia neurons. These changes may disrupt the processing of cortical information flow from the striatum to the output nuclei, and presumably underlie the clinical manifestations of Parkinson's disease. We have recently reported that chronic nigrostriatal lesions induce changes in the functional state of striatal medium-spiny neurons (MSNs) that could facilitate spreading of cortical synchronous activity (approximately 1 Hz) to striatal target nuclei. Here we show that systemic administration of D1 dopamine agonists was sufficient to restore the changes induced by chronic nigrostriatal lesions on striatal neuronal activity into the normal state. Following systemic administration of SKF38393 or SKF81279 the membrane potential of striatal MSNs was upheld into a more hyperpolarized value and action potential firing probability decreased. D1 agonists also increased the latency to the cortically driven plateau depolarization and reduced the peak potential of the short latency depolarizing postsynaptic response to a more hyperpolarized value. The present study provides in vivo evidence indicating that pharmacological stimulation of D1-class dopamine receptors can modulate the flow of cortical information through the striatum in the parkinsonian state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.