Abstract

Core-periphery structure is a typical meso-scale structure in networks. Previous studies on core-periphery structure mainly focus on the improvement of detection methods, while the research on the impact of core-periphery structure on cascading failures in interdependent networks is still missing. Therefore, we investigate the cascading failures of interdependent scale-free networks with different core-periphery structures and coupling preferences in the paper. First, we introduce an evaluation index to calculate the goodness of core-periphery structure. Second, we propose a new scale-free network evolution model, which can generate tunable core-periphery structures, and its degree distribution is analyzed mathematically. Finally, based on a degree-load-based cascading failure model, we mainly investigate the impact of goodness of core-periphery structure on cascading failures in both symmetrical and asymmetrical interdependent networks. Through numerical simulations, we find that with the same average degree, the networks with weak core-periphery structure will be more robust, while the initial load on node will influence the improvement of robustness. In addition, we also find that the inter-similarity coupling performs better than random coupling. These findings may be helpful for building resilient interdependent networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.