Abstract

A key challenge in making 2-D materials viable for electronics is reducing the contact resistance ρ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> of the source and drain, which can otherwise severely curtail performance. We consider the impact of contact resistance on the performance of transistors made with single-layer graphene and MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , two of the most popular 2-D materials presently under consideration for radiofrequency (RF) applications. While our focus is on the impact of ρ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> , we include the impact of all the device parasitics. We consider a device structure based on the 7-nm node of the ITRS and use the unity-current-gain and unity-power-gain frequencies (f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> and f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> ) found from quantum-mechanical simulations, ballistic for graphene and with scattering for MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , as indicators of RF performance. We quantify our results in terms of the values of ρ <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> needed to reach specific values of f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> and f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> . In terms of peak performance (over all bias conditions), we show that graphene retains a significant edge over MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , despite graphene's poor output conductance, with MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> only being able to bridge the gap if considerably better contact resistances can be realized. However, with the bias current restricted to a technologically relevant value, we show that graphene loses much of its advantage, primarily due to a reduction in its transconductance g <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sub> , and we show that MoS <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> can then meet or exceed the performance of graphene via the realization of contact resistances already achieved in multilayer structures. Our values of f <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> for short-channel devices (around the 7-nm ITRS node) are shown to be consistent with experimental data for present-day long-channel devices, supporting our approach and conclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call