Abstract

Fly ash and slag have been widely used to produce low-CO2 concrete. However, previous studies have not paid enough attention to the lower carbonation resistance of fly-ash-and-slag-blended concrete and the aggravations of carbonation due to climate change. This study proposes a technique for the design of fly-ash-and-slag-blended concrete considering carbonation durability coupled with various climate change scenarios. First, CO2 emissions are evaluated from concrete mixtures. Concrete strength and carbonation depth are evaluated using efficiency factors of fly ash and slag. A genetic algorithm (GA) is used to find the optimal mixture with the lowest CO2 emissions considering the requirements of strength, carbonation durability, and workability. Second, we clarify the effect of cost on the mixture design of low-CO2 concrete. A genetic algorithm is also used to find the optimal mixture with the lowest cost. We found that the optimal mixture with the lowest cost is different from that with the lowest CO2 emissions. Third, by adding the additional constraint of cost, Pareto optimal mixtures are determined, which consider both lower CO2 emissions and lower material cost. The analysis results show that carbonation durability is the control factor of mixture design of fly ash-slag blended concrete. To mitigate the challenge of climate change, the binder content of blended concrete should be increased.

Highlights

  • Fly ash and slag are widely used as mineral admixtures for producing environmentally friendly concrete

  • For high-volume fly-ash-and-slag ternary-blended concrete, the concrete mixtures were controlled by carbonation durability, because fly ash and slag impaired the carbonation resistance of the concrete

  • We proposed a technique for designing low-CO2 cement–fly ash–slag ternaryblended concrete

Read more

Summary

Introduction

Fly ash and slag are widely used as mineral admixtures for producing environmentally friendly concrete. Yu et al [5] produced ultra-high-performance concrete using fly ash, slag, and limestone powders They found that given the same compressive strength, the addition of mineral admixtures can reduce 25% of CO2 emissions. Yang et al [13] proposed a mixture proportioning design method for fly-ash-and-slag-blended low-CO2 concrete considering the requirements of CO2 reduction, strength, and workability. Miller et al [10,11], Muller et al [12], and Yang et al [13] mainly focused on CO2 emissions and strength Their studies [10,11,12,13] did not consider the limit of lower carbonation resistance of fly-ash-and-slag-blended concrete. We find the Pareto optimal mixtures that have lower CO2 emissions and lower material cost

Optimization Design of Concrete Mix Proportions
Objective Function
Constraint Conditions
Strength Model
Carbonation Model
Workability Model
Summary of Properties Evaluation Models and Genetic Algorithm
Proportional Design without Considering Carbonation
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call