Abstract

The complex nature of the energy industry across extraction, transportation, processing, delivery and decommissioning creates significant challenges to how the sector responds, adapts and mitigates against risks posed by the changing future climate. Any disruption in this interconnected system will affect both industry and society. For example, in the summer of 2005 Hurricane Katrina and a month later Hurricane Rita had wide reaching impacts on the US offshore Oil and Gas industry which resulted in an increase in global oil prices due to loss of production and refinery shutdowns in the Gulf of Mexico. Preparing, mitigating and adapting to these climate changes is dependent upon identifying appropriate climate indicators as well as the associated critical operational thresholds and design criteria of the identified vulnerable assets. The characterization and understanding of the likely changes in these climate indicators will form the basis for adaptation plans and mitigating actions. The Met Office in collaboration with energy industry partners, under the Copernicus Clim4energy European project, has developed a Climate Change Risk Assessment tool, which allows the visualization and extraction of the most recent sea level and wave climate information to evaluate their future changes. This study illustrates the application of this tool for evaluation of the potential vulnerability of an offshore infrastructure in the North Sea. The analysis shows that for this asset there is a small increase in sea level of 0.20–0.30 m at the location of interest by 2050. However, there is a small decrease or no consistent changes projected in the future wave climate. This wave signal is small compared to the uncertainty of the wave projections and the associated inter-annual variability. Therefore, for the 2050s time horizon, at the location of interest, there is no strong impact of climate change at the annual scale on the significant wave height, the sea level and thus the associated climate change driven extreme water level. However, further analysis are required at the seasonal and monthly scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call