Abstract

This study investigates molybdenum deposited by atomic layer deposition (ALD) as a potential gate metallization for flash memory devices. Polycrystalline (110)-oriented, with low-resistivity (∼16 μΩ cm) ALD Mo films were deposited on SiO2 and Al2O3 using hydrogen reduction of Mo-oxychloride precursor. On SiO2, an effective work function (EWF) of 4.75 ± 0.1 eV was obtained for as-deposited samples, and its value increased up to 4.9 ± 0.05 eV upon annealing at 600 °C, whereas on Al2O3, a stable EWF value of 5.05 ± 0.05 eV was observed. The EWF variation is correlated with changes in the composition and chemical bonding at the metal/dielectric interface. The latter were investigated by energy dispersive x-ray spectroscopy and electron energy loss spectroscopy performed using scanning transmission electron microscopy and x-ray photoelectron spectroscopy. This analysis revealed that the presence of Mo oxide at the Al2O3/Mo interface stabilizes the EWF, and the EWF increase on SiO2 is attributed to Si enrichment at the SiO2/Mo interface upon annealing. A theoretical model is suggested to explain the chemical bonding difference on SiO2 and Al2O3, based on the Mo-precursor reactions with the surface groups of the dielectric. This study emphasizes the importance of the precursor/substrate reactions in determining the compositional and, therefore, electrical properties of the metal/dielectric interface, and demonstrates that ALD Mo deposited directly on SiO2 and Al2O3 is a promising candidate for gate metallization of flash devices due to its high EWF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.