Abstract
The impact of surface orientations on electrical characteristics of Ge pand n-channel MOSFETs with ultrathin equivalent oxide thickness Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> /GeOx/Ge gate-stacks is systematically investigated. It is found that (100), (110), and (111) GeOx/p-Ge metal-oxide-semiconductor (MOS) interfaces have a similar interface trap density (D <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">it</sub> ) level, but (100) GeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> /n-Ge MOS interfaces exhibit the lowest D <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">it</sub> . As a result, the highest peak mobility is obtained in (110) Ge pMOSFETs for holes and in (100) Ge nMOSFETs for electrons. The higher interface state density is observed inside valence band of Ge for (110) GeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> /Ge MOS interface and inside conduction band of Ge for (110) and (111) GeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> /Ge MOS interfaces, leading to the significant effective mobility reduction in high normal field for (110) Ge pMOSFETs, and (110) and (111) Ge nMOSFETs. It is also confirmed that decrease of plasma oxidation temperature is also effective in reduction of the interface roughness at (100) to (111) GeO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">x</sub> /Ge interfaces, resulting in clear enhancement of both hole and electron mobility in high normal field region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.